
�9 , tangential stress, N/m2; T, dimensionless tangential stress, [2~w R~e/(pU~)]; ~, reference 
angle from frontal critical point of cylinder, deg; M, Mach number; Nuf, Nusselt number 
(~d/l); Pr, Prf, Prandtl number (DfCpf/If); Re, Reynolds number (U~dpf/Df); Tu, turbulence 

of flow (100/u'2/U~), %. Indices: f, external boundary of boundary layer, y ~ 6; 0, iso- 
thermal conditions; ~, unperturbed flow, m, point of pressure minimum; tr, point of onset 
of transient flow conditions; t, turbulent layer; Tu, with turbulence of the incoming flow; 
T, heat-conduction equation. 
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FRICTION AND HEAT EXCHANGE IN FLOW OVER A PERMEABLE SURFACE 

S. V. Zhubrin and V. P. Motulevich UDC 532.542.2 

The extremal character of the dependence of friction on suction velocity on a 
permeable surface immersed in an incompressible liquid flow is established. 
The suction value corresponding to maximum friction and the limiting heat ex- 
change intensity are calculated. 

Interest in the study of transport processes in flow over surfaces made of permeable 
materials has been stimulated by a number of practical technological applications in both 
traditional (air and water transport), and new fields of contemporary industry. 

Recent studies have shown that the efficiency of drying of sheet and roll materials 
is increased significantly by thermal processing with a jet draft of heated gas [i]. How- 
ever, introduction into practice of the progressive techniques realized by this method [2, 
3] and development of corresponding methods for calculating equipment parameters [4] demand 
an ever-increasing understanding of the physical bases of the transport processes involved. 

The goal of the present study is to analyze the physical features of thermal and dynam- 
ic interaction of an incompressible flow with a permeable surface of a body over which the 
flow passes. Quantitative data were obtained on hydrodynamics, friction, and heat exchange 
in the presence of intense surface fluxes of matter. These data can be used independently, 
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and may also prove useful in development of more general approaches, based on numerical 
solution of the complete system of transport equations. 

Flow over a permeable surface has a number of unique features which lead even in the 
stage of problem formulation to significant departures from the classical approaches of 
boundary-layer theory including draft and suction. 

Thus, the intensity of filtration through the wall is determined by the excess gas pres- 
sure at its surface. Very often this pressure is determined by the well-known Darcy resis- 
tance laws. A consequence of this fact is the variability of the filtration flux along the 
wall being flowed over: v w = Vw(X, p) (here and below we use the generally accepted notation). 
Moreover, it is obvious that for an arbitrary intensity of filtration mass exchange the ve- 
locity fields on the body being flowed over (the intensity being determined by the degree of 
permeability) in the range 0 ~ v w g u~ can differ markedly from corresponding values for po- 
tential flow over an impermeable body. Finally, as is often found in practice, the main 
flow may be of a perturbed, turbulized character. 

The mathematical formulation of the problem must be based on the complete Navier-Stokes 
equations, or, for consideration of flow disturbance, on the Reynolds equations for a turbu- 
lent flow. The boundary conditions must consider the wall permeability under the action of 
excess pressure. 

The solution of such a problem involves great difficulties, not only, and perhaps, not 
as much, of a computational, but of a physical character. While these difficulties at pres- 
ent have been successfully overcome in some cases, nevertheless, for example, as regards 
completing the system of Reynolds equations under conditions of external perturbations, 
meaningful results are significantly less in number. However, a useful qualitative and 
quantitative analysis of the problem can be carried out quite simply. 

Here we will analyze the hydrodynamic situation which develops along a permeable wall 
for two asymptotic values of filtration flux: v w << u= and v w ~ u~. If the wall permeabili- 
ty is low, then the filtration velocity will be small. Then as Re + ~ viscous forces mani- 
fest themselves only within the limits of a boundary layer, the thicknesslof which 60 ~ 

xc~v/u= is quite insignificant. It is physically clear that at draft velocities close to the 
incident flow velocity (v w ~ u~), almost all the material of the latter will pass through 
the wall, not moving away from it, i.e., ~w + 0. As was shown in [5], in this case viscous 

forces operate within the limits of a layer 60 ~ ~ .  

There is no justification to assume that for any 0 < v w ~ u~ the order of magnitude of 
the viscous layer thickness will exceed the asymptotic estimates indicated above. 

Thus, in the case of flow over a permeable surface by a liquid at high number Re for 
any possible filtration velocities it is only in a very small region near the wall that the 
characteristics of the viscous liquid differ from those of an ideal one. 

Gas loss through the wall affects the hydrodynamics and heat exchange with the flow 
because of change in the boundary conditions for velocity on the wall and the conditions for 
potential overflow near the wall. We will trace the effect of these factors over the range 
of variation of filtration velocity indicated above. We shall do this with the example of 
a circular cylinder with distributed suction of material over its surface. 

It can easily be shown that the potential function q for flow over a cylinder with dis- 
tributed surface draft of suction in cylindrical coordinates (r, 8) will have the following 
form: 

[ m ~ u~.cosO r + (1 -- 2v,~/u=) + - -  vw cos O, 
r 

(i) 

with velocity components: 

1 0r [ RZ ( 2v,,,) RZ v~]  u e =  -- u=sin6) 1 + ~ 1 �9 - 6 - - - -  , 
r O@ ~t= . r z u= 

Oq~ _ . u ~ c o s @  1 . . . . . . . . . .  1 . 
U r  - - -  Or f 2  l l~  r 2 IL 

( 2 )  
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In a coordinate system fixed to the forward critical point (X, Y) [6] these relation- 
ships make it possible to write (v w = Uw): 

~T= 1 1 - - u , , ,  (3) 
( 1  - fl ~ 

From this it is simple to obtain an expression for the velocity gradient in the vicinity of 
the critical point: 

duldX . . . . .  2 ( l  .... ~l~,). (4 )  

The coefficient within the parentheses is a correction to the velocity gradient at the 
wall due to removal or addition of material: 

du/dX = (du/dX)o (1 -- $w)- ( 5 ) 

Analogous calculations show that this result is also valid for bodies of other form. 

Equation (2) can be used to calculate velocity fields for an ideal liquid for any drain 
(source) intensity on the surface of the body flowed over. Analysis of this expression re- 
veals that in the direct vicinity of the surface the velocity components are quite sensitive 
to the suction value. This effect is most intense in the vicinity of the forward critical 
point. Therefore, with no loss of generality we will limit further analysis to this region. 
An additional advantage of this limitation is the possibility of obtaining quantitative data 
with simple calculations. 

The flow near the critical point belongs to an especially simple class of viscous liquid 
motions. The Navier-Stokes equations admit transformations which reduce them to a single 
ordinary nonlinear third-order differential equation. This procedure is widely known [7], 
and there is obviously no need to repeat its details herein. The key feature of this ap- 
proach is its representation of the velocity components of the potential flow, which play 
the role of boundary conditions for the equations of the viscous region: 

f ' " q - i f f " - - [ ' f ' q - l = - O ,  ' q = 0 ,  f = [ ~ ,  f ' = 0 ,  q - + - - o o ,  / ' = 1 .  (6 )  

In  t h i s  e q u a t i o n  and t h e  b o u n d a r y  c o n d i t i o n s  

q = [(du/dX)/v]'/~X, 

which  d e f i n e s  t h e  v e l o c i t y  componen t s  

u = - -[ (du/dX)v]  1/2f (~), v = (du/dX)Y['  (~). 

At a l a r g e  d i s t a n c e  f rom t h e  w a l l ,  a t  X = - ~ ,  t h e  component  u mus t  e q u a l  u = (du/dX)X.  

Using these relationships, we can calculate the friction for a given suction intensity 
T, if the value of the latter on an impermeable surface T 0 is known together with the corre- 
sponding solutions of Eq. (6) fw", f0w": 

T = [(du/dX)/(dkd~)o]l,5 [~ ( 7 )  

The s o l u t i o n s  o f  Eq. (6 )  h a v e  been  s t u d i e d  in  g r e a t  d e t a i l  [ 7 ] ,  and t h e i r  d e r i v a t i o n  
by n u m e r i c a l  me thods  p r e s e n t s  no g r e a t  d i f f i c u l t y  f o r  any  fw(Vw). A n a l y s i s  o f  t h e s e  s o l u -  
t i o n s  a l l o w s  us  t o  a p p r o x i m a t e  w i t h  good a c c u r a c y  t h e  s econd  t e r m  on t h e  r i g h t  s i d e  o f  Eq. 
(7 )  by t h e  l i n e a r  f u n c t i o n  

L 

Then Eq. (7 )  can  be w r i t t e n  in  i t s  f i n a l  fo rm:  

= (1 - -Z~)  ~ ,5 (1 + B ~ ) .  (8 )  
T o 

This expression indicates the extremal character of the behavior of relative friction as a 
function of suction velocity. Its intensity, corresponding to the maximum value of shear 
stress, is easily defined: 
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I0O 

i I I 0'10 ,, 

Fig. i. Effect of suction on surface fric- 
tion: i) B = I0; 2) i00; 3) 500 [curves, 
calculation with Eq. (8); points, numerical 
calculation for B = i00]. 

(u~)max = 0.4 - -  0.6/B. (9 )  

Curves of relative friction versus suction intensity for various values of the coeffi- 
cient B are shown in Fig. I. We will note that in the Re range of practical interest (Re > 
102), (Uw)max differs only insignificantly from its theoretically possible value as B + ~: 

(Uw)ma x - -  0.4. (10)  

As i s  e v i d e n t  f rom t h e  c u r v e s ,  c a l c u l a t i o n  by Eq. (8 )  and e x a c t  n u m e r i c a l  s o l u t i o n  g i v e  
p r a c t i c a l l y  t h e  same r e s u l t .  T h u s ,  i n  t h e  f u t u r e ,  we can  u s e  t h e  v a l u e  o f  Eq. (10)  f o r  en -  
gineering estimates of the hydrodynamic situations which develop. 

Analysis of Fig. 1 permits quite simple answers to a number of questions regarding the 
effect of various factors on the change in friction near the permeable surface flowed over: 
for gas filtration rates through the surface less than (Uw)max, increase in permeability 
leads to an increase in friction, while if the permeability of the material is such that 
~w > (~w)max, the friction decreases; for identical suction intensity (materials of equal 
permeability) the friction increases with increase in Re, and thus, with dimensions of the 
shell and degradation of flow conditions. 

We must also call attention to the magnitude of Xma x, which may exceed the friction on 
an impermeable surface by decades. 

We will now consider a problem differing from the preceding one in the presence of a 
temperature difference between the flow T~ and the permeable surface T w. For definiteness, 
we assume that T= > T w. We will limit our analysis to the critical point region in the 
asymptotic case of maximum filtration flow intensity (u w = u~). This approach has the goal 
of obtaining information on the limiting values of the heat-exchange coefficients. 

In this case the energy equation for Pe >> 1 and the boundary conditions can be repre- 
sented in the following form: 

dT d2T 
pCvu~ = ~ , X  = O, T = T~:, X - + - - o o ,  T = T~. (11)  

dX dX ~ 

The solution of Eq. (ii) is: 

T = T = - - e x p / \ l u ~ X }  (T=- -Tw) .  
\ • / / 

(12)  

Considering that 

q ~ , , = ~ '  OT.  S t =  9u=Cp(T| ' 

we obtain St = l. 

Thus, the heat-exchange coefficient increases with increase in permeability of the sur- 
face flowed over and in the limit becomes equal to the relative gas flow rate through the 
surface, it being notable that the thermal conductivity of the flow and the geometry of the 
body have no effect. 

The results obtained and relationships established between friction characteristics and 
heat exchange may be used to estimate and choose operating regimes for equipment for thermal 
processing of permeable materials. They also provide a basis for verifying numerical methods 
for calculation of such processes in a more strict formulation. 
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NOTATION 

u~, undisturbed flow velocity; Vw, Uw, surface suction rate; Re = u~R/v, Reynolds 
number; Tw, surface friction stress; ~ = u/u~, dimensionless velocity; X = x/R, dimension- 
less coordinate; R, characteristic dimension (radius) of body flowed over; f, dimensionless 
flow function; q, self-similar coordinate; B - /Re/(d~/dX)0, velocity gradient parameter; 
T, temperature, X, thermal conductivity coefficient; p, flow density; Pe = u~RCpp/X, Peclet 
number; K, thermal diffusivity coefficient; qw, thermal flux surface density. 
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KNUDSEN MOLECULAR FLOW IN A CHANNEL WITH A SMALL TEMPERATURE 

DIFFERENCE AT ITS ENDS 

V. D. Seleznev, B. T. Porodnov, A. N. Kulev, 
A. G. Flyagin, A. N. Kudertsev, and S. P. Obraz 

UDC 533.6.011.8 

The thermomolecular pressure difference (TPD) of helium, argon, and krypton 
is measured in a packet of glass capillaries for temperatures 273 and 293 K 
at their ends in a i0-i00 range of Knudsen numbers. 

The temperature difference at the ends of a gas-filled channel results in the occurrenc~ 
of a mass flow. In a closed system this flow causes the so-called thermomolecular pressure 
difference. 

Elementary kinetic theory, based on the assumption that the density of molecule colli- 
sions with the channel wall in the Knudsen mode should not depend on the coordinates, yields 
the following result [i] for the pressure ratio at the ends of the channel: 

Ph =(rh I, P \ ~ /  ;v=1/2 (i) 
C 

A strict kinetic solution of the corresponding boundary-value problem with specularly 
diffuse molecule scattering at the walls allows one to find an expression for the exponent y 
of the effect for arbitrary Knudsen numbers [2] in terms of the reduced flux of numbers of 
particles subjected to the temperature gradient (thermal creep) QT and the pressure gradient 
(Poiseuille flow) Qp in the form 

S. M. Kirov Ural Polytechnic Institute, Sverdlovsk. Translated from Inzhenerno- 
Fizicheskii Zhurnal, Vol. 54, No. 5, pp. 719-724, May, 1988. Original article submitted 
January 16, 1987. 

0022-0841/88/5405-0475 512.50 �9 1988 Plenum Publishing Corporation 475 


